Closed Weingarten Hypersurfaces in Warped Product Manifolds
نویسندگان
چکیده
Given a compact Riemannian manifold M , we consider a warped product M̄ = I ×h M where I is an open interval in R. We suppose that the mean curvature of the fibers do not change sign. Given a positive differentiable function ψ in M̄ , we find a closed hypersurface Σ which is solution of an equation of the form F (B) = ψ, where B is the second fundamental form of Σ and F is a function satisfying certain structural properties. As examples, we may exhibit examples of hypersurfaces with prescribed higher order mean curvature.
منابع مشابه
Closed Weingarten Hypersurfaces in Semi-riemannian Manifolds
The existence of closed hypersurfaces of prescribed curvature in semi-riemannian manifolds is proved provided there are barriers.
متن کاملWarped product and quasi-Einstein metrics
Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...
متن کاملCurvature Estimates for Weingarten Hypersurfaces in Riemannian Manifolds
We prove curvature estimates for general curvature functions. As an application we show the existence of closed, strictly convex hypersurfaces with prescribed curvature F , where the defining cone of F is Γ+. F is only assumed to be monotone, symmetric, homogeneous of degree 1, concave and of class C, m ≥ 4.
متن کاملLinear Weingarten hypersurfaces in a unit sphere
In this paper, by modifying Cheng-Yau$'$s technique to complete hypersurfaces in $S^{n+1}(1)$, we prove a rigidity theorem under the hypothesis of the mean curvature and the normalized scalar curvature being linearly related which improve the result of [H. Li, Hypersurfaces with constant scalar curvature in space forms, {em Math. Ann.} {305} (1996), 665--672].
متن کاملWeingarten spacelike hypersurfaces in a de Sitter space
We study some Weingarten spacelike hypersurfaces in a de Sitter space S 1 (1). If the Weingarten spacelike hypersurfaces have two distinct principal curvatures, we obtain two classification theorems which give some characterization of the Riemannian product H(1−coth ̺)× S(1 − tanh ̺), 1 < k < n − 1 in S 1 (1), the hyperbolic cylinder H(1 − coth ̺) × S(1 − tanh ̺) or spherical cylinder H(1 − coth ̺)×...
متن کامل